
J. Fluid Mech. (2009), vol. 625, pp. 445–474. c© 2009 Cambridge University Press

doi:10.1017/S0022112008005685 Printed in the United Kingdom

445

Hydrodynamic propulsion of human sperm

ERIC A. GILLIES1, R ICHARD M. CANNO N1,
R ICHARD B. GREEN1 AND ALLAN A. PACEY2†

1Department of Aerospace Engineering, University of Glasgow, Glasgow G12 8QQ, UK
2Academic Unit of Reproductive and Developmental Medicine,

School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield S10 2SF, UK

(Received 19 February 2008 and in revised form 15 December 2008)

The detailed fluid mechanics of sperm propulsion are fundamental to our under-
standing of reproduction. In this paper, we aim to model a human sperm swimming
in a microscope slide chamber. We model the sperm itself by a distribution of
regularized stokeslets over an ellipsoidal sperm head and along an infinitesimally thin
flagellum. The slide chamber walls are modelled as parallel plates, also discretized by
a distribution of regularized stokeslets. The sperm flagellar motion, used in our model,
is obtained by digital microscopy of human sperm swimming in slide chambers. We
compare the results of our simulation with previous numerical studies of flagellar
propulsion, and compare our computations of sperm kinematics with those of the
actual sperm measured by digital microscopy. We find that there is an excellent
quantitative match of transverse and angular velocities between our simulations and
experimental measurements of sperm. We also find a good qualitative match of
longitudinal velocities and computed tracks with those measured in our experiment.
Our computations of average sperm power consumption fall within the range obtained
by other authors. We use the hydrodynamic model, and a prototype flagellar motion
derived from experiment, as a predictive tool, and investigate how sperm kinematics
are affected by changes to head morphology, as human sperm have large variability
in head size and shape. Results are shown which indicate the increase in predicted
straight-line velocity of the sperm as the head width is reduced and the increase
in lateral movement as the head length is reduced. Predicted power consumption,
however, shows a minimum close to the normal head aspect ratio.

1. Introduction
An understanding of the fluid mechanics of sperm propulsion is fundamental to

our understanding of the biology of reproduction (Fauci & Dillon 2006). This fluid
flow may be approximated by the inertialess Stokes equations (Gray & Hancock
1955), where the cell is propelled by zero-thrust swimming (Lighthill 1976).

Many previous studies of flagellar propulsion have used spermatozoa as an
archetype. Taylor (1951) began the first quantitative analyses of swimming micro-
organisms by assuming the flagellum as a two-dimensional, small amplitude sheet.
More realistic geometries, including models with high amplitude, thin flagella, were
developed by Hancock (1953), who placed a distribution of stokeslets and doublets,
singular solutions to the Stokes equations, along the flagellum centreline. This
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slender-body theory (SBT) approach did not account for a head attached to the
flagellum. Gray & Hancock (1955) introduced resistive-force theory (RFT) where
tangential and normal resistance coefficients, Ct and Cn, proportional to the relative
velocity of an element of the flagellum, are derived using SBT for a given flagellar wave
and thickness. Integration of these coefficients gives a flagellar propulsive force and
moment that, when taken in conjunction with cell tangential and normal drag, allow
calculation of the propulsive velocity of the cell. This early model was used by many
researchers in studying sperm propulsion (see Brennen & Winet 1977). Brokaw (1970)
used RFT to analyse arbitrary planar motions of a sperm tail and compared computed
average propulsive velocities with those found in experiment. Brokaw (1970) was
perhaps the first to suggest using a series of photographs of cell position and flagellar
motion to compare computed cell trajectories with experiment. Yundt, Shack &
Lardner (1975) carried out this suggestion by taking high-speed cinematography of
sea urchin, rabbit, and bull sperm, and used Brokaw’s modified RFT to compute
sperm tracks resulting from the observed tail motions. These computed tracks
were compared to the observed tracks. The approach of Yundt et al. (1975) is
the one we update here using digital image processing and a stokeslet simulation.
These SBT and RFT approaches have been thoroughly reviewed by Lighthill (1976)
and Brennen & Winet (1977), and compared by Johnson & Brokaw (1979). Higdon
(1979) developed an improved SBT incorporating an image system of the flagellum
inside a spherical cell head – this exact approach accounted for the hydrodynamic
interaction between head and flagellum, which was missing from RFT. Higdon (1979)
studied the effects of wavelength and amplitude changes of the flagellum (as did
Dresdner, Katz & Berger 1980) and also the effects of changing spherical head
dimension on both power and propulsive velocity. Phan-Thien, Tran-Cong & Ramia
(1987) introduced the boundary-element method (BEM) for flagellar propulsion to
account for non-spherical heads and non-slender flagella. These researchers derived
optimal geometrical configurations for micro-organisms using helical flagellar motion,
based on propulsive velocity and dissipated power. Cortez, Fauci & Medovikov (2005)
introduced the regularized stokeslet method as a way of removing singularities from
distributions of stokeslets and applied this to both BEM and infinitesimally thin
flagella. An advantage of the regularized method is that it gives a bounded velocity
field for simulations like ours where the head is modelled as a smooth surface and the
flagellum by a simple line filament, or for simulations where the stokeslets distributed
as a set of discrete, disconnected, points such as might be used to model a large
number of suspended micro-organisms (Cisneros et al. 2007).

Many researchers have highlighted the significant effects of the presence of solid
(or fluid) boundaries (Brenner 1962; Rothschild 1963; Blake 1971; Blake & Chwang
1974; Katz 1974; Fulford & Blake 1983; Gueron & Liron 1992; Ramia, Tullock &
Phan-Thien 1993) on the motion of spheres, slender bodies, fixed cilia or swimming
micro-organisms at low Reynolds number. One of the first studies to take into account
the effect of solid boundaries on flagellar propulsion was Reynolds (1965) who used
the early flagellum model of Taylor (1951) in the presence of a wall. Katz (1974)
showed that an important feature of flagellar propulsion near a plane boundary was
an increase in the ratio of normal to tangential resistance coefficients. Given that it
is this ratio which determines flagellar propulsive force in RFT, and the values of the
coefficients which determine power dissipation, this work suggested that the presence
of walls must be included when considering cells observed between a microscope
slide and coverslip. There are also many instances in the female reproductive tract
where sperm are in close proximity to epithelial surfaces, or the ovum (Fauci & Dillon
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2006). Ramia et al. (1993) undertook a thorough study of the effects of both a single
wall, modelled by an image system, and parallel plates, modelled by an image system
and discretized plate, on the locomotion of a swimming microorganism. Ramia et al.
(1993) also undertook simulations of interactions between close swimming micro-
organisms, as did Ishikawa et al. (2007), both using a BEM formulation. Recently,
Cisneros et al. (2007) and Ainley et al. (2008) have applied the method of regularized
stokeslets to flows bounded by a single wall, and Cisneros et al. (2007) to simulations
of multiple interacting organisms.

Most previous studies of flagellar propulsion have, with the exception of Yundt
et al. (1975) and Dresdner & Katz (1981), used prototype travelling waves to model
the flagellar beat. Yundt et al. (1975) used high-speed cinematography to manually
trace out actual flagellar beat and cell kinematics and compared these to predictions
of cell kinematics using resistive-force theory. A significant technological advance
since the work of Yundt et al. (1975) has been the advent of high frame rate digital
video cameras that can be coupled with microscopy to obtain images of the flagellum
throughout many flagellar beat cycles. In this paper, we use digital microscopy to
measure approximate head morphology, kinematics and actual flagellar beat, on a
number of sperm and compare the measured kinematics to those computed using a
distribution of regularized stokeslets (Cortez et al. 2005) that discretize the sperm.
The method of regularized stokeslets is appropriate as we model the sperm head as
a discretized ellipsoidal surface and the flagellum as a slender filament. In addition,
we follow Ramia et al. (1993) by noting that the effects of the microscope slide and
coverslip walls are likely to be significant, given that the chambers used in clinical
andrology are usually 20 μm deep, which is around half the length of the sperm. The
results of Fulford & Blake (1983); Katz (1974); Ramia et al. (1993), amongst others,
indicate the Ct/Ct∞ and Cn/Ct ratios for rods translating parallel to and midway
between slide chamber walls. Here, Ct∞ is the tangential resistance coefficient in an
infinite medium. For a 50 μm long slender rod, similar to the size of a human sperm
flagellum (WHO 1999), these results indicate ratios of Ct/Ct∞ ≈ 1.18 and Cn/Ct ≈ 1.78
for a 50 μm deep chamber, and Ct/Ct∞ ≈ 1.39 and Cn/Ct ≈ 2.09 for a 20 μm deep
chamber (values obtained by reading the BEM results in figure 4(e) of Ramia et al.
1993). We therefore also discretize the microscope slide chamber in our simulations.

The paper begins with a discussion of our hydrodynamic solution method for
a flagellum and attached cell body, and verification of the computational method
on translating sphere and rod test cases, as well as comparison with the propulsive
velocity calculations of Dresdner et al. (1980) and Higdon (1979) and dissipated
power calculations of Higdon (1979). We then introduce the walls of the microscope
slide chamber into the simulation, and verify these calculations against the results
summarized in Ramia et al. (1993). The paper proceeds with a calculation of
propulsive velocity and trajectory, resulting from experimentally observed flagellar
motions, and a comparison of these kinematics with experiment. In addition to using
experimentally observed sperm for validation of the hydrodynamic code, we discuss
predictions of sperm power dissipation. Finally, we use our method to predict changes
to sperm kinematics and power consumption that result from hydrodynamic effects
of changes to head geometry.

2. Hydrodynamic simulation method
Mammalian sperm, including those of humans, exhibit various swimming

behaviours throughout their life, which are thought to be related to the different
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stages of their journey through the female reproductive tract (Suarez & Pacey 2006).
Briefly, following ejaculation, sperm motion is initially linear and progressive; whereas
once sperm reach the uterine (fallopian) tubes, their pattern of movement changes
to become more erratic and hyperactivated. While hyperactivated motility is thought
to be important in the final stages of fertilization, this paper will examine the fluid
mechanics of progressively motile sperm, since these are what are evaluated in semen
analysis (WHO 1999) to determine the sperm that are capable of penetrating cervical
mucus and therefore capable of entering the female reproductive tract (Aitken et al.
1985). The motile concentration of such sperm has been shown to be closely associated
with predicting the probability of conception (Larsen et al. 2000).

The length of the human sperm flagellum L is around 50 μm (WHO 1999) and its
radius a is 0.25 μm (Dresdner & Katz 1981); the head is approximately an ellipsoid
of 5.8 × 3.1 × 1 μm (Brennen & Winet 1977) – although human sperm display a
large variability in head morphology. The straight line, propulsive velocity of sperm
isolated from seminal plasma by density centrifugation and then observed in a simple
salt solution is around 40–100 μms−1 (Mortimer 1994). The viscosity of semen is
variable (Owen & Katz 2005), but for experiments in tissue culture, the fluid has
a viscosity close to water at 37 ◦C. The Reynolds number of the sperm cell during
progressive motility is therefore of the order of 10−2 (Dresdner et al. 1980).

Given the very low Reynolds number, the inertialess Stokes equations are a useful
approximation for the flow (Happel & Brenner 1981; Lighthill 1976). We define a
local coordinate frame x–y, with x aligned along the head principal axis and the
undeformed flagellum. The centre of this frame is the head centroid. We also define
a fixed global frame X–Y. The unknown swimming velocity of the sperm is, in the
local coordinate frame aligned with the head, Up(t), and its angular velocity, Ω(t).
The head and flagellum are parameterized by position r(s, t), where s is a coordinate
on the surface of the cell. The flagellum has ‘beat’ velocity û(s, t), but the head does
not beat. For planar motion of the cell (Brennen & Winet 1977), the velocity at any
point on the cell is

u(s, t) = û(s, t) + Up(t) + Ω × r(s, t). (2.1)

The incompressible Stokes equations, pertinent to the flow, are

μ∇2u − ∇p = f , ∇ · u = 0. (2.2)

As the Stokes equations are inertialess, they do not admit accelerations. Consequently,
the force f (s, t) and moment generated by the cell have to balance∫

s

f ds = 0,

∫
s

r × f ds = 0, (2.3)

where the integrals are over the entire surface of the cell (head, mid-piece and
flagellum). This force balance is termed zero-thrust swimming (Lighthill 1976).

At each time point during a numerical simulation, this force balance is used to
derive the unknown propulsive velocity that results from the flagellar motion. The
Stokes equations are steady (Happel & Brenner 1981), but the propulsive velocity
required for a force balance at any instant will vary with the instantaneous flagellar
position and velocity. In this way the steady, inertialess Stokes equations can be
used to calculate sperm acceleration. The zero force and moment balances are an
integral part of the fluid solution procedure. This procedure generates a time-varying
propulsive velocity, which can then be used to reconstruct the cell track, and a
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time-varying force distribution, which may be used, via an application of the Stokes
equations throughout the flow-field, to obtain the fluid flow-field velocities.

2.1. Method of regularized stokeslets

In order to solve the Stokes equations we use a very useful approximation of the
regularized stokeslet due to Cortez (2001): the (unknown) velocity at any point s over
the sperm cell surface is

uj (s) = − 1

8πμ

N∑
n=1

3∑
i=1

Sij (sn, s)fn,iAn, (2.4)

where it is assumed that the cell has been discretized into N points, An is a
corresponding quadrature weight (which may vary depending on whether the point
is on the head, mid-piece or the flagellum), and −fn,i is the ith component of the
force on the fluid applied at point n, which is an unknown. Sij (sn, s) is the regularized
stokeslet of Cortez (2001), which removes the singularity of the stokeslet.

Sij (sn, s) = δij

r2 + 2ε2

(r2 + ε2)3/2
+

(xi(sn) − xi(s))(xj (sn) − xj (sn))

(r2 + ε2)3/2
(2.5)

with r = ||x(sn) − x(s)||, and ε a small regularization parameter. The optimum value of
ε is one which minimizes the velocity, or force, error for a particular discretization of
the surface geometry (Ainley et al. 2008) and may be different between the head and
flagellum (and walls if present). Choice of the regularization parameter is intimately
involved with the choice of discretization and is discussed in § 2.2. In vector form,
(2.4) is

u = G f . (2.6)

The problem is three-dimensional, with six unknowns (three translational and
three rotational propulsive velocities) but only propulsive motion in the x–y plane
is non-zero in our simulations: the tail motion is restricted to this x–y plane, and
the problem is symmetrical about z = 0 as we simulate sperm swimming in either an
infinite medium, or parallel to, and mid-way between parallel slide chamber walls. For
each point on the cell, and on the slide chamber walls (if present), the velocity is split
into a known beat velocity, zero-velocity boundary condition or component resulting
from the unknown cell propulsive velocity. For planar motion, each cell point i has
the x and y components of propulsive velocity (including angular velocity),

XiUp, (2.7)

where

Xi =

[
1 0 −ryi

0 1 rxi

0 0 0

]
(2.8)

and Up = [Upx Upy Ω]T . Concatenated into a vector comprising all the discrete points
in the problem (i.e. on the cell head, flagellum and slide chamber walls), the velocity-
boundary condition is u = û + XUp . Matrix G is inverted and we form the vectors

b = G−1û; a = −G−1X. (2.9)

The x, y components of the vectors b, a and the z component of r × b, r × a are
integrated over the surface of the cell to give B, the components of force and moment
resulting from the beat velocity, and A, the components of force resulting from the
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Figure 1. (a) Discretization of the head and flagellum (inset box shows the head in close-up).
The dots are stokeslet positions. (b) L2 regularization error for translating, head-shaped
ellipsoids and ‘flagella-like’ rods. (c) Cumulative distribution of local velocity error for
non-collocated points on the surface of a translating sphere. Collocated and non-collocated
points are shown in the inset figure with an arrow showing the translation direction.

unknown propulsive velocity. As these forces and moments on the cell integrate to
zero, finally, Up is found from solution of

AUp = B. (2.10)

2.2. Spatial discretization, and regularization parameter for a free-swimming sperm

Normal sperm are comprised of three distinct structural regions: the head, mid-piece
and the flagellum. In our experiments, the mid-piece was difficult to distinguish from
the proximal end of the flagellum, so, for the purposes of hydrodynamic simulation,
we modelled the sperm with an ellipsoidal head and thin flagellum only. The method
of regularized stokeslets may be applied to both infinitesimally thin flagella and
spherical/ellipsoidal bodies, allowing us to investigate both the effects of tail beat and
head morphology on the cell’s fluid mechanics.

A human sperm head is, very approximately, a scalene ellipsoid (Brennen & Winet
1977), and it is computationally expedient to discretize the surface of the head by a
strip, arranged in a spiral from the front of the head to the back (see figure 1a), much
like an apple peel. In this way, a single coordinate s can be used to label points over
the head (along the head ‘peel’) and along the flagellum. Alternative discretizations
are also possible (Cortez et al. 2005), and we made sure that our simulations were
not dependent on the discretization. The quadrature weights for the head are thus
ds × p, where p is the peel thickness. A standard head dimension of 5.8 × 3.1 × 1 μm
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was used for validating our hydrodynamic simulation, but, in general, sperm may
present a range of length/width ratios, some of which may be considered abnormal
for clinical purposes by the relatively strict definition provided by WHO (1999). In
our discretization, we keep the absolute size of ds and p the same, so that the area
of each element on the head stays the same, regardless of head dimensions. The total
number of patches on each modelled sperm head is therefore proportional to the
head surface area. In this way we had a consistent method of discretizing heads of a
range of dimensions (including a range of possible human sperm head morphologies
and also spheres for comparison with the results of Ramia et al. 1993 and Higdon
1979). For our simulations, a step size ds = 0.7 μm was chosen, and the thickness p

was set at ds/4 so that the standard head dimension was discretized by 101 points.
The discretization is such that each stokeslet force acts over approximately the same
patch area on the head. Constant force discretization was used.

The natural way to discretize the flagellum, given that it is a thin, approximately
inextensible filament is a series of equally spaced points along the flagellum. The force
and moment balance for the flagellum, as an integral along a filament, has quadrature
ds. The flagellum thickness of 0.5 μm only enters the computation in the choice of
optimum regularization parameter ε, which is discussed below.

With this fixed discretization for all spheres, ellipsoidal heads and flagella that we
wished to model, we were able to investigate an appropriate regularization parameter
for the stokeslets on the cell. There is an optimum regularization parameter, which
will give a minimum force, or velocity, error for a particular discretization (Ainley
et al. 2008). Following the approach of Ainley et al. (2008) and Cortez et al. (2005),
it is reasonable to choose a regularization parameter based on known exact results
which are closely related to the problem at hand. To this end, we examined our
predictions of drag on ellipsoids (of a range of dimensions similar to those of human
sperm heads) and of thin rods (of a dimension similar to sperm flagella) translating
in x and y directions in an infinite medium. We also studied the drag on spheres of
a large range of sizes (larger than the range of sizes expected to be observed in a
human ejaculate). The rods were modelled in the same way as the flagellum, and their
exact solution was based on that of an elongated, needle-like ellipsoid (Happel &
Brenner 1981). Figure 1(b) shows the L2 error for all of the ellipsoid, sphere and rod
drag simulations as the regularization parameter is varied. The L2 error is defined as

||e||L2
=

√√√√ 1

M

1

D2
max

M∑
i=1

e2
i

with the error ei = D − Do, where D is the predicted drag force on the ellipsoid or
rod, and Do is the associated theoretical drag. While Dmax is the maximum value
of theoretical drag, M is the number of separate simulations used to optimize the
error. We chose two isolated rod simulations (one longitudinal and one transverse
translation) and two isolated ellipsoid simulations (both with an ellipsoid of dimension
5.8 × 3.1 × 1 μm, with one longitudinal and one transverse translation) to plot
figure 1(b). The optimum ε = 0.32 did not change when we varied the ellipsoid
dimensions. This value is fixed for our particular discretization and is kept constant
in all of our simulations.

Singular stokeslets alone may be used to model the flow around a cell body such as
a sperm head by, for example, the highly accurate boundary-integral method. For the
flagellum, a line distribution of singular stokeslets may not be sufficiently accurate
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Figure 2. Computed temporal variation of (a) UPX/c, (b) UPY /c and (c) θ for a headless
flagellum of shape given by y = α sin k(x − ct) with αk =1, n= 1, over a beat cycle compared
with the results of Dresdner et al. (1980).

to represent the flow around the slender-body and higher-order singularities may be
required to give the desired accuracy in the near field. For example, see Dresdner
et al. (1980) where the near field of the flagellum was modelled by stokeslets and
stokes doublets but the far-field by stokeslets alone. The regularized stokeslet method,
which we use here, causes each force to be spread over a small, smooth sphere rather
than a single point (Cortez et al. 2005): this ensures that the near-field velocity error
is small without recourse to higher-order singularities, such as Stokes doublets and
dipoles. The cumulative local velocity error at non-collocated points, ei = |Uxi − 1| for
a sphere, with i = 1, . . . , 500, translating with velocity Ux = 1 is plotted in figure 1(c).
Fifty per cent of these 500 non-collocated points have error less than 2.7 %, 90 % have
error less than 5.0 %, and all have an error less than 6 %. Discretization and a choice
of regularization parameter of the microscope slide chamber walls are discussed in
§ 2.4.

2.3. Verification of the free-swimming sperm model

The free-swimming model was verified by comparison with two test cases prior
to comparison with the kinematics of experimentally observed sperm: the work
of Dresdner et al. (1980) who plotted time histories of propulsive velocities for a
free-swimming headless flagellum and the work of Higdon (1979) who undertook
a thorough theoretical, hydrodynamic study of the effects of head size on flagellar
propulsion and cell power consumption.

A comparison of the regularized stokeslet method with the results of Dresdner and
Katz’s headless flagellum is shown in figure 2. For this test case, the flagellum has fixed
inextensible length L, radius a, and the y coordinate is y(s) = α sin k(x(s) − ct), with
αk = 1 and a/L = 0.01. The wavelength of the flagellar motion is L. The travelling
wave flagellum is discretized by N = 50 equally spaced regularized stokeslets along
the flagellum. The velocity of the flagellum at these points was calculated analytically.
In figure 2 we compare our results to those in figure 3 of Dresdner et al. (1980). The
results show dimensionless propulsive velocity (in a global frame) and the orientation
of the longitudinal axis of the flagellum. The comparison between our results and
those of Dresdner et al. (1980) is shown to be generally very good.
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Figure 3. (a) Normalized average straight-line velocity Up/c computed for a range of spherical
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(solid lines) using regularized stokeslets. (b) Predicted non-dimensional inverse efficiency η−1

for cells with a range of head size A/L and flagellar radius 0.01L. Crosses are results extracted
from figures 6 and 14 of Higdon (1979), which compare well with our results (solid lines) using
regularized stokeslets.

To verify our prediction of the effect of head size on cell kinematics and power
consumption we compare with the results of Higdon (1979). Higdon considered a
distribution of stokeslet and dipole singularities along a helical, or planar, flagellar
centreline, a stokeslet, dipole, and rotlet to model a spherical head, with an image
system for the flagellum singularities at the spherical cell body centre. The flagellar
wave studied by Higdon was a single-frequency travelling wave, attached radially to
the spherical cell body. The range of spherical head sizes considered by Higdon ranged
from A/L = 0.05 to A/L = 0.2. The smaller head sizes studied by Higdon approach
the dimensions found in many species of spermatozoa – for example, human sperm,
with dimension close to that of an ellipsoid of 5.8 × 3.1 × 1 μm have a volume
equivalent radius of 2.6 μm, which with a flagellar length of 50 μm is A/L = 0.052.
The longitudinal, translational, equivalent radius (Happel & Brenner 1981) for such
an ellipsoid is 1.39 μm, giving A/L = 0.028. The same geometry was used as an input
to our code, with the sperm head and flagellum discretized by regularized stokeslets,
rather than by Higdon’s exact method. This verification was necessary to show that
our model could predict propulsive velocity as head morphology was varied.

Data read from Higdon’s figure 5 were recast into a graph of spherical head
radius A, non-dimensionalized by tail length L, versus straight line swimming speed
Up , non-dimensionalized by wave speed c, and shown in figure 3(a). The flagellum
wave amplitude is α, and with fixed wavenumber k =2π/L, the parameter αk is non-
dimensional amplitude. Two different values of this amplitude parameter αk =1, 1.5,
and a range of head sizes between headless and 0.10L were investigated. The
two different computational methods reveal similar results, with Higdon’s results
represented as crosses, and our computations by solid lines in figure 3(a). We
concluded that our model could adequately predict the hydrodynamic effects of
changing head size.

Higdon (and Phan-Thien et al. 1987) also calculated dimensionless inverse efficiency

η−1 =
P̄

(6πμĀ + KT L)Ū 2
, (2.11)
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where P̄ is the cycle averaged instantaneous power, Ā is the volume equivalent radius
of the head, L is the flagellum length, Ū is the beat cycle average propulsive velocity
and

KT =
2πμ

log(2L/a)
. (2.12)

Points from Higdon’s figure 6 and figure 14 were combined to give the crosses
on figure 3(b). The solid line is a prediction of cell power consumption using our
regularized method with spatially discretized head. It is important that we verified
our power calculations because power changes appreciably (Ramia et al. 1993) when
cells are simulated in shallow chambers, like those used in our experiment (see § 3).

2.4. Inclusion of microscope slide chamber walls

For clinical purposes, human sperm are normally observed in chambers of 20 μm
depth (WHO 1999) and, as such the cell swims between parallel walls that are often
less than a flagellum length apart. We use the results of Ramia et al. (1993) to
benchmark our computations of the effect of slide chamber walls. It was noted by
Katz (1974) that forces on a flagellum increase in the presence of walls, and that the
ratio of normal to tangential forces (the propulsive advantage) increases. However,
head drag also increases close to walls, and this increase compensates for most of
the propulsive advantage (Ramia et al. 1993). As a result, the presence of walls may
not affect sperm kinematics significantly, assuming the flagellum beats in the same
fashion, but will increase the power dissipation. To model the presence of walls, Ramia
et al. (1993) used a system of images (a half-space) and a single, large discretized
plate. Ainley et al. (2008) have recently derived an image system, including regularized
doublets and dipoles, to enforce no slip velocity for a regularized stokeslet single wall
case. Ainley et al. (2008) reported that there is no current regularized system for flow
between two parallel plates, but this situation could be approximated by a regularized
image system and a single discretized plate as in Ramia et al. (1993). Ramia et al.
(1993) note that the same results can be achieved, albeit at the expense of the size
of the computational problem, by two discretized plates. This is the simple approach
we employ here: to discretize, using regularized stokeslets, a plate above and below
the sperm, sphere or rod (the two cases we use to verify our method). As we use a
regularized system of stokeslets, we only need to discretize infinitesimally thin plates.

To model the plates, we used a square regular grid of side length 2L with a grid step
size 10 × ds, meshed using Delaunay triangulation. To regularize the plate elements,
we follow Ainley et al. (2008) who use a regularization ε = CAm, where A is the area
of the surface element, and m = 0.45. C = 0.28 worked well in our test cases and was
fixed for all further simulations. Ainley et al. (2008) note that there is no established
convergence analysis for the regularized stokeslet method other than to compare
the discretized, regularized system against known test cases: here, as in Ramia et al.
(1993), we use the drag on a sphere translating between two plates and the drag on
a rod translating in longitudinal and transverse directions between two plates. The
test case rods were of the same size as the flagellum, and the test case spheres were
of the same equivalent radius (Happel & Brenner 1981) as our standard sperm head.
The values of sphere drag, and rod normal and tangential resistance coefficients were
similar (within two per cent) for a larger plate or for finer discretization (as long as
the regularization parameter for the plates was adjusted according to ε =0.28A0.45

as above). The sphere drag predictions and rod tangential and normal resistance
coefficient predictions were insensitive to rotation or movement of the sphere and rod
test cases.
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Figure 4. (a) Predicted increase in drag for spheres translating between parallel chamber
walls. The chamber half-depth is h and A is sphere radius. Square markers indicate the results
of Ramia et al. (1993), and the solid line with cross (×) markers indicates our computations
with spheres. (b) Predicted increase in Ct/Ct∞ and Cn/Ct with varying chamber depth for a
rod mid-way between chamber walls. The chamber half-depth is h and the rod length is L.
Square markers indicate the Ct/Ct∞ results; circle markers indicate the Cn/Ct results of Ramia
et al. (1993); the solid line with cross markers indicates our computations of Ct/Ct∞; and the
solid lines with plus (+) markers indicate our computations of Cn/Ct .

Figure 4(a) shows the ratio of predicted drag for a sphere translating between plates
to the exact drag (6πμAU ) in an infinite medium. Our sphere simulation results are
indicated by a solid line with cross markers. The results of Ramia et al. (1993)
are shown as square markers in the figure. We only ran simulations which cover
the range of depths of microscope slide chamber encountered in our experiments
(the half-depth of these MicrocellTM slides ranged from h = 6 μm to h = 25 μm in our
experiments, which are detailed in the Appendix and discussed in § 3) and this range
of depths is indicated in the figure. The comparison with the results of Ramia et al.
(1993) is generally good over our range of interest.

Figure 4(b) shows our predictions of tangential and normal drag of a thin rod
50 μm long and 0.5 μm wide over the range of chamber half-depths h encountered
in our experiments. The results are again compared to those of Ramia et al. (1993).
We plot the ratio of tangential drag for the rod translating between plates to that of
a rod translating in an infinite medium, Ct/Ct∞. Following Ramia et al. (1993), we
also plot the ratio of normal to tangential resistance Cn/Ct . Our Ct/Ct∞ prediction is
indicated by cross markers and a solid line and the corresponding results of Ramia
et al. (1993) by square markers. Our predicted Cn/Ct ratio is represented by plus
markers and a solid line, and the corresponding results of Ramia et al. (1993) by
circle markers. The agreement is generally good with a slight underprediction of
Ct/Ct∞, and a consequent over-prediction of Cn/Ct ratio at shallow chamber depths.
Overall, the same drag trends with increasing drag and a greater increase in flagellar
propulsive advantage are shown with decreasing chamber depth.

3. Comparison of observed sperm kinematics with hydrodynamic prediction
To compare the results of our hydrodynamic code with the kinematics of sperm

observed in vitro we took digital images of several sperm (three are described in
this study) and measured both sperm head centroid position and flagellar position,
which was used via numerical differentiation to estimate flagellar beat velocity. The
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depth of field of the optics in our experiment was 4 μm, and sperm were observed
as close to mid-way between the slide chamber walls as was possible to determine in
our experiment. This mid-chamber focal plane was obtained by focusing on the slide
chamber bottom and top (determined by the sharpness of focus of small scratches),
and halving the number of turns of the microscope focus control. It was necessary
to obtain clear images of the tail at a frame rate high enough that the tail position
and beat velocity could be inferred along s. In our data, the distal end of the tail
was sometimes difficult to identify clearly. However, in the majority of images, the
tail was clearly focused and defined for its entire length, allowing us to define L and
curve-fit a filament, length L, to the minority of images with out of focus or difficult
to delineate tail images. In this way, we obtained tail position and beat velocity over a
continuous time period. Head dimensions were traced out manually using the clearest
images of the head. The head centroid position, and principal axis orientation were
calculated automatically. The technical limitations of observing tail movement should
not be underestimated: the system has to have images clear enough for accurate tail
morphology, and hence an appropriate camera exposure has to be set. To numerically
differentiate position, the camera has to operate at a high enough frame rate. The
nominal beat frequency of human spermatozoa is around 10 Hz (Mortimer 1994)
(although, in our experiments, we found this to vary significantly, and there were
usually at least two to three higher harmonics present). A Nyquist limit of at least
60 Hz was judged to be the lowest possible frame rate, and this is possible using
modern Computer-Aided Sperm Analysis (CASA) machines, but for the purposes
of hydrodynamic analysis, this frame rate was doubled to at least 120 Hz to ensure
that the beat velocity estimates were accurate enough (the actual camera frame rate
was 121 Hz in our experiments). Details of the experimental method to obtain both
sperm kinematics and the position and beat velocity of the flagella are discussed in
the Appendix.

The beat velocity at point s, inferred from the time-varying flagellar position, is
needed to determine the force the flagellum exerts on the fluid at that point. This beat
velocity û(s, t) may be determined via the numerical time derivative of the position of
the flagellum r(s, t) of each imaged sperm. A 4-point centred difference of recorded
position data was used to estimate the beat velocities. The raw data are at 121 Hz
but smaller time steps of 0.005 s were used in the hydrodynamic solution method
and so linear interpolation of the raw position and velocity was performed to obtain
the flagellum position and beat velocity at any required time point. As the beat
velocity is obtained via numerical differentiation of noisy position data, the predicted
propulsive velocities obtained by the hydrodynamic analysis are also contaminated
with noise. Yundt et al. (1975) suggest comparing computed tracks with experiment,
rather than just comparing computed propulsive velocity, as the integrated velocity is
less sensitive to noise.

Three individual, progressively motile sets of cell kinematics are discussed here.
Cells σ1 and σ3 were chosen for display as they are both long tracks, and σ2 was
chosen because its track displays some ‘looping’ behaviour that we were intrigued to
see if the fluid mechanics analysis also predicted. Cells σ2 and σ3 were studied in 12 μm
chambers, and were therefore expected to show significant effects of chamber walls,
and σ1 in a 50 μm chamber. The effect of the chamber on σ1 was therefore expected to
be much less than for the shallower chambers. As well as simulations of spheres and
rods, Ramia et al. (1993) undertook simulation of micro-organisms swimming next
to walls and between parallel walls. Their results indicated that a flagellar propulsive
advantage occurs when an organism swims close to walls, but that an increase in head
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drag compensated for the propulsive advantage and so the cell propulsive velocities
were not altered significantly. However, Ramia et al. (1993) pointed out that the power
requirements for micro-organisms swimming between plates would be higher than
for free swimming ones due to the increased forces on the head and flagellum. We
ran the hydrodynamic simulation both with and without a model of the microscope
slide chamber walls to investigate how the prediction of sperm kinematics and power
consumption was affected. Although there were sperm–sperm interactions in the data
set, σ1, σ2 and σ3 were sufficiently far away from other cells (generally greater than a
flagellum length) for no contact to take place. There should have also been little effect
on these cells from the local velocity fields generated by other swimming sperm, as
the velocity fields generated by a flagellum at this Reynolds number is only significant
within a distance of the order of a flagellum length (Lighthill 1976). An exception was
cell σ2 which passed within half a flagellum length of an immotile cell. No motion of
this extra cell was noted however, so the force on σ2 was judged to be minimal.

The comparison is shown in terms of four sub-figures for sperm tracks σ1 and
σ2. Sub-figure (a) shows the head orientation angle θ (which was integrated from
the angular velocity), and sub-figures (b) and (c) show the propulsive velocities Upx

and Upy in the local coordinate frame aligned with the head. Sub-figure (d ) shows
the integrated absolute velocity giving the sperm centroid track. It is to be expected
that the head orientation angle and computed track will drift from the observed
experimental data due to integrated errors. Following Yundt et al. (1975), we use a
comparison of the predicted and experimental track as the most appropriate method
for assessing the performance of the simulation. In addition to comparisons of
instantaneous propulsive velocity and track, predicted power consumption for walled
and unbounded simulations is plotted for each simulation. Only the track and power
consumption comparison for the walled and unbounded simulations, are shown for
cell σ3. A viscosity of μ = 0.001 Pa s was used in the simulations.

In figure 5, we show our simulation of sperm σ1 with and without the presence
of chamber walls and also the experimental kinematics for this cell. This cell was
progressively motile and relatively fast. Its velocity along a 5-point running average
track, based on a 30 Hz data sample and defined as the VAP (Mortimer 1994), was
105 μms−1, and the track length covered a period of 0.5 s. The head was approximated
by an ellipsoid of standard, 5.8 × 3.1 × 1 μm, dimension and the flagellar length was
measured as 41 μm. The results for simulated head angle and lateral velocity are
generally very good. There are significant higher harmonic components above the
base beat cross frequency evident in both the experimental and simulated lateral
velocity. The simulation of local longitudinal velocity is slightly less good, with a
notable loss of accuracy at 0.3–0.35 s. In general, the local longitudinal velocity
prediction is much more sensitive to noise in the measured flagellar beat. For both
walled and unwalled simulations, the integrated track displays the same transition
from ‘triangular-like’ waveform for the first two cycles of the track to a more ‘square-
wave-like’ waveform. These same features are seen in the measured track and the
shape of the track is quite well captured by the simulations. The dashed and solid
lines are almost indistinguishable in figure 5(a–c), indicating that the simulation in
the deep chamber and in an unbounded medium result in very similar kinematics.
This similarity is to be expected since the chamber is relatively deep. The forces
on the flagellum and head are, however, slightly higher for the walled simulation
than for the simulation in an unbounded medium. These higher forces are evident
in figure 6, which shows the predicted power consumption of this sperm. In this
figure, dashed lines represent the results of simulation in an unbounded medium, and
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Figure 6. Comparison of the predicted power consumption of sperm σ1. The solid line is the
predicted power when chamber walls are included in the simulation; the dashed line is the
result of a computation where the chamber walls are ignored. The mean power consumption
in the walled case is 0.0168 pW, and the mean power consumption is 0.0145 pW when walls
are ignored.
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solid lines represent the results of simulation in a 50 μm deep chamber. Although
the power differences between the two simulations are small, the sperm swimming
in the chamber is predicted to consume more power than the sperm swimming in
the unbounded medium. Our prediction of average power consumption for cell σ1,
which swam at a simulated 85 μms−1, is predicted to be 0.0168 pW in the chamber
and 0.0145 pW in an unbounded medium. Cycle average power consumption was
calculated by Dresdner & Katz (1981) using the formula

P̄ ≈ (μf 2L3)p̂, (3.1)

where 0.4 < p̂ < 0.6 is a dimensionless value dependent on the sperm morphology
and flagellar beat, f is frequency and L is sperm length. Cell σ1 has beat frequency
15.83 Hz and so Dresdner and Katz’s formula gives a power prediction of 0.0102–
0.0154 pW. Our unbounded simulation predicts a power consumption within this
range. Phan-Thien et al. (1987) noted that the power consumption for a cell with
a flagellum modelled by a travelling wave varies very little throughout the cycle;
however, here the flagellum of σ1 is close to undeformed, and almost stationary, at
several time points (when it thus produces almost no propulsive velocity), and so its
power consumption is oscillatory, unlike that obtained with a travelling wave.

During the data gathering experiments (see the Appendix), and in the hydrodynamic
analysis, small-scale detail including loops and kinks in the track of some of the
sperm were noticed. These small-scale details often coincided with low sperm velocity
magnitude. A second sperm, σ2, presented a track consisting of alternate sense loops
of the head centroid at regularly spaced points. This cell was recorded in a shallow
12 μm chamber. We were intrigued to find out if the fluid mechanic simulation also
demonstrated these loops. Sperm σ2 was progressively motile, with VAP =41 μms−1,
flagellum length was measured at L =40 μm and head dimensions were taken as
5.8 × 3.1 × 1 μm. The data for this cell are shown in figure 7. Again, thin solid
lines with plus markers denote the experimentally measured kinematics, dashed lines
represent the simulation of this sperm swimming in an unbounded medium, and thick
solid lines represent the simulation of the sperm swimming in the centre of a shallow
12 μm deep chamber. In this set of simulations it is evident in figure 7 that there
is a slightly larger difference in the kinematics predicted with and without chamber
walls – although the differences in the propulsive velocities (figure 7a) are still quite
small. It can be seen in figure 7(d ) that the integrated velocities produce a track length
of 8.85 μm in the experiment, 6.50 μm when walls are included in the simulation,
but only 5.68 μm when walls are ignored. The inclusion of chamber walls in the
simulation increases the accuracy of the track in this case. It is evident that the fluid
simulation also demonstrates loops (of the same sense and approximate size) as are
present in the experimental data. The fluid mechanical modelling demonstrates that
these loops in the track are a feature of this sperm’s, approximately planar, flagellar
beat, and are not caused by out-of-plane rotation of the head. While sufficient
for satisfying the Nyquist sampling criterion, the sampling rate in the experiments
was still relatively low and there are only about six data points per wavelength in
figure 7(a–c). This sampling is adequate for assessment of the wavelength, where
the agreement between simulated and experimental track is excellent, but there is
an inevitable data loss that will affect amplitude more significantly. The simulation
reproduces the important features of the experimental track with good overall fidelity.
Head angle prediction θ (figure 7a) is similar for both simulations and shows slight,
brief deviations from experiment (up to 7◦) early and very late in the track. Simulated
lateral velocity Upy in figure 7(c) is slightly higher when the walls are ignored but the
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Figure 7. Comparison of computed and measured sperm kinematic parameters for the
‘looping’, progressively motile, sperm cell σ2: (a) head angle θ (deg); (b) local (head-aligned)
frame propulsive velocity Upx; (c) lateral velocity Upy (μm s−1); (d ) integrated track. The
measured kinematic data are presented by thin lines with plus (+) markers; the computation
with chamber walls is presented by thick solid lines; the computation in an unbounded medium
is presented by thick dashed lines. Note the similarity between the computed and measured
track topologies in (d ), especially with regard to the looping behaviour. The tracks move,
broadly, from right to left.

peak-to-peak velocity amplitudes of the simulation and experimental data are similar
throughout; predicted x velocity, Upx in figure 7(b), is more retrograde than is seen
in the experiment, and the peak-to-peak velocity amplitude of the experimental data
is smaller on average. Furthermore, the Upx traces suggest the existence of a higher-
frequency component which would be affected more significantly by the low sampling
rate and this may partly explain the inferior amplitude prediction than for Upy . The
predicted track topologies in figure 7(d ) show all the features of the experimental
data including the loops referred to earlier. With this very shallow chamber, however,
there are large differences in the predicted power consumption (shown in figure 8)
between the walled and unbounded simulations. In the walled simulation, the power
consumption is 0.0127 pW, which is likely to be close to the actual power consumption
of the sperm, but it is underestimated by almost fifty per cent, with an average of
0.0084 pW, when walls are ignored. Again, it can be seen that the instantaneous power
consumption varies throughout the beat cycle. Cell σ2 has beat frequency component
of 11.22 Hz contributing 70 % of the tail amplitude and a component at 15.24 Hz
contributing 30 % of the amplitude and so (3.1) gives a power prediction of 0.006–
0.009 pW.
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Figure 8. Comparison of the predicted power consumption of sperm σ2. The solid line is the
predicted power when chamber walls are included in the simulation; the dashed line is the
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Figure 9. Comparison of the predicted tracks of sperm σ3. The solid line is the predicted
track when chamber walls are included in the simulation; the bottom line is the result of a
computation where the chamber walls are ignored. The thin solid line is the experimentally
recorded track.

To further investigate the increased power consumption in shallow chambers and
to compare our simulation to a long track, we also present data for a third sperm,
σ3, in figure 9. This sperm was progressively motile (with an average path velocity
VAP = 76 μms−1) over approximately two seconds. The length of the flagellum for
this case was measured at 46 μm and the head was approximated by the standard
dimensions of 5.8 × 3.1 × 1 μm. Sperm motion is broadly from left to right in the
figure. Three tracks are shown: the thin solid line is the experimentally recorded track;
the thick solid line is the computation where the effects of the chamber walls are
included; the thin solid line with dots is the result of a computation where wall effects
are ignored. The features of most of the cycles are well captured by the simulations,
with some distinctive small-scale features common to both the experiment and the



462 E. A. Gillies, R. M. Cannon, R. B. Green and A. A. Pacey

0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

Time along track (s)

P
1
2
 μ

m
/P

∞

Figure 10. Ratio of the predicted power consumption of sperm σ3 with walls included to that
with walls ignored. The thick solid line is a ‘cycle-’ averaged ratio, and the thin solid line is
the instantaneous power ratio. The average increase in power consumption is 32 %.

simulations. It must be remembered that the hydrodynamic code only has the planar
x–y tail beat motion and position as an input, and does not record out-of-plane
head rotation (which we could not measure accurately). The hydrodynamic analysis
therefore shows that these small-scale track details are largely the result of complexity
in the (planar) tail motion, and not solely due to out-of-plane head rotations. The
experimental track is 107 μm long, the simulation including chamber walls produces
a track 93 μm long and the simulation where walls are ignored produces a track
89 μm long. The mean power consumption is 0.0090 pW when chamber walls are
included, and when walls are ignored it is 0.0068 pW. The presence of walls only 6 μm
above and below the cell increases the power by 32 %. The ratio of instantaneous
power consumption between the walled and unbounded simulations is shown in fig-
ure 10. Cell σ3 has beat frequency component of 6.6 Hz contributing 50 % of the
tail amplitude and a component at 11.84 Hz contributing 50 % of the amplitude and
so (3.1) gives a power prediction of 0.0051–0.0076 pW. All of the predicted tracks
were shorter than the experimentally recorded tracks, indicating that the computed
average propulsive velocities are slightly lower than in the experiment.

4. Analysis of a prototype sperm
Cell σ1, which had the least evidence of the effect of chamber walls, produced

the most regular track and so a section of tail data for this cell was extracted and
fourth-order polynomials in s fit, in a least squares sense, to produce a prototype
cycle of noise-free flagellum motion. This prototype flagellum was used to investigate
the flow-field resulting from flagellar propulsion and the effects of changes to head
dimension on sperm kinematic parameters (assuming constant flagellar motion).

4.1. Flow-field of a swimming sperm

Lighthill (1976) argued that flagellar hydrodynamics analysis should go beyond the
velocity of the organism to flow-field analysis as well. This argument is especially true
if interactions between cells are of interest, as is often the case in a semen sample.
Although no interactions were present in our data, we show velocity vectors for the
prototype of σ1, simulated in an infinite medium, to indicate the extent of disturbances
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Figure 11. Velocity vectors for the prototype σ1 at two time points 0.02 s, or 30 % of a
flagellar beat cycle apart. The local vortices shown move down the flagellum as the beat
progresses.

to the flow-field generated by the sperm in figure 11. The figure is plotted in a fixed
global reference frame such that the velocity vectors at the head are equal to the
propulsive velocity. The flow is highly localized about the flagellum as is predicted by
Lighthill, and also seen in the results of (Higdon 1979), consisting of counter rotating



464 E. A. Gillies, R. M. Cannon, R. B. Green and A. A. Pacey

vortex structures (see Gray’s figure of the local flow about a swimming nematode
pictured in Lighthill 1976), which move down the flagellum as the beat progresses.
Lighthill (1976) pointed out that these zero-thrust flow-fields have a local character,
extending a distance considerably less than a wavelength from the flagellum. Although
the velocity from a single stokeslet decays with 1/R, Lighthill (1976) showed that
a distribution of stokeslets with strength varying sinusoidally with x, as is the case
with a travelling wave flagellum, decay almost exponentially with distance R from
the x axis. This local character, and indeed the counter-rotating vortex structure, is
clearly evident in the computed flow-field. The flow-fields (like those of Higdon 1979;
Dresdner & Katz 1981; Fauci & Dillon 2006) show the dominance of normal over
tangential forces: lengths of the flagellum that are moving in the normal direction are
associated with large flow-field velocity (and force); lengths of the flagellum moving
tangentially are associated with low velocity.

4.2. Effects of head morphology on sperm hydrodynamics

Human sperm are pleomorphic and so have a wide range of head sizes and shapes,
both within and between individuals, compared to most other species . A relatively
low level of sperm competition in humans is thought to allow such pleomorphy to
persist (Birkhead 2000). Head aspect ratio and size is assessed for clinical purposes
by analysis of stained images of fixed (dead) sperm and a fertility assessment of
the sample includes a count of the proportion of sperm that have heads within the
size and length/width definitions proposed by WHO (1999). It is certainly the case
that a population of sperm with ‘normal’ flagella will have a distribution of head
sizes and morphology. Length/width ratio affects the translational and rotational
mobility of a body in Stokes flow (Kim & Karilla 1991), and so sperm heads of
different dimensions will experience different resistances. The effects of changing head
dimensions may be investigated using our prototype model of flagellar motion. This
study was motivated by an empirical evidence that suggests that the effect of head
shape on sperm hydrodynamics is considerable (Gomendio et al. 2007).

The hydrodynamic effects of head aspect ratio are complicated (Higdon 1979;
Phan-Thien et al. 1987), but may be summarized by their effects on two important
kinematic parameters: the straight-line velocity VSL, which is defined as the distance
between the start and finish of the track, divided by the time taken to swim the
track; and the amplitude of lateral head movement ALH (Mortimer 1994), which is
defined as the lateral deviation of the track (peak to peak) about its average path (i.e.
double the amplitude). These simulations are presented for an infinite medium: the
trends in the results are the same when the cell swims between plates. An exception is
the calculation of cycle average power consumption, which does change appreciably
when simulations are run with and without walls.

It is interesting to note that via a statistical analysis of red deer (Cervus elaphus
hispanicus) sperm head length/width ratio and VSL, Gomendio et al. (2007) found
that sperm with head dimensions of high length/width ratio swim faster than those
with lower length/width ratio. We wanted to investigate this experimental observation
of Gomendio et al. (2007) using a hydrodynamic simulation rather than looking at
the statistics of a population of sperm. As a summary of these computations of
the effect of head length/width ratio on VSL, we present figure 12(a), which is
a comparison of the VSL for several different heads attached to the prototype
flagellum of sperm σ1. The VSL is kept dimensional in the figure as that is the
form most usual in semen analysis. We note, however, that head length/width ratio
can be varied in a number of ways: e.g. by keeping the head length constant and
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Figure 12. (a) Straight-line velocity VSL for variations in head length/width for the prototype
flagellum σ1. Simulations are presented for constant head length 5.8 μm (the solid line), for
constant head volume= 4

3
π5.8 × 3.1 × 1 μm3 (the dashed line) and for constant head width

3.1 μm (the dashed-dotted line). Caricatures next to the curves show comparative sperm head
sizes. (b) Predicted VSL using an axial resistance model of ellispoidal head and constant
force generating rod-like flagellum U = F/(6πμR + KT L). Here, R is the equivalent radius of
ellipsoids of constant x axis length 5.8 μm (the solid line), constant volume= 4

3
π5.8×3.1×1 μm3

(the dashed line) and constant y axis width 3.1 μm (the dashed-dotted line). Caricatures next
to the curves show comparative ellipsoid and rod sizes and direction of translation.

varying head width; by keeping the volume of the head constant but varying the
length/width ratio and by keeping the head width constant and varying the head
length. Each method of changing the head length/width ratio has a different effect
on the VSL of the simulated sperm. Caricatures are drawn in figure 12(a) to indicate
the approximate dimensions of the simulated sperm. The computations at constant
head length (the solid line in figure 12a) were run with a fixed head length of
5.8 μm; the computations at constant head width (the dashed-dotted line in fig-
ure 12a) were run with a fixed head width of 3.1 μm and computations at constant
volume (the dashed line in figure 12a) were run such that the volume of the head
was equivalent to that of an ellipsoid of 5.8 × 3.1 × 1 μm3. All of the lines therefore
intersect at a nominal head dimension of 5.8 × 3.1 × 1 μm. The head depth of 1 μm
was kept constant in all simulations.

Our modelling is consistent with the observation of Gomendio et al. (2007) that
sperm with high head length/width ratio swim faster. We show that, for the solid
line in figure 12(a), narrower sperm (high head length/width ratio) have higher VSL
than thicker sperm (low head length/width ratio) for constant head length. That is,
narrowing the head is seen to increase the sperm VSL if the associated head length is
kept constant. We suggest that this is the effect seen, statistically, by Gomendio et al.
(2007). Gomendio et al. (2007) postulated that ‘elongated’ heads have less resistance
to forward motion. However, at this low Reynolds number, it is shown by the dashed
line in figure 12(a) that true elongation of the sperm head by stretching its length
and narrowing its width (to retain constant volume) has very little effect on the fluid
resistance of the head. Here there are two competing effects on the axial resistance
(Kim & Karilla 1991): the axial resistance increases with head length, but drops
with a decrease in head width. The two effects broadly cancel. There is, however, a
slight increase in VSL for this type of head elongation, but there is no appreciable
‘streamlining’ effect at this low Reynolds number. Indeed, for simulations where the
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Figure 13. Amplitude of sperm lateral head movement ALH for variations in head
length/width for the prototype flagellum σ1. Simulations are presented for constant head

length 5.8 μm (the solid line), for constant head volume= 4
3

π5.8×3.1×1 μm3 (the dashed line)
and for constant head width 3.1 μm (the dashed-dotted line). Caricatures next to the curves
show comparative sperm head sizes.

head is elongated, while keeping head width constant the dashed-dotted line of fig-
ure 12(a) shows that VSL is reduced.

Sperm with heads of different aspect ratio and size have different axial, transverse
and rotational resistances. The dominant effect on VSL of changes to the axial
resistance is illustrated by considering a simplified ‘axial resistance’ model where the
sperm is modelled as an ellipsoidal head and straight, non-beating flagellum assumed
to provide a constant axial propulsive force. For this simplified model, this propulsive
force must equal the drag on an ellipsoidal head and straight flagellum, which is
assumed to be (Phan-Thien et al. 1987)

F = (6πμR + KT L)U, (4.1)

where R is the equivalent radius (Happel & Brenner 1981) of the ellipsoid and
KT =2πμ/ log(2L/a). For our sperm, the standard head size has R = 1.39 μm and
L =45 μm and a = 0.25 μm. In our simulations, the standard size sperm has a straight-
line velocity of 87.49 μms−1, and so, for our simple model (4.1), we assume that the
flagellum generates a constant force F = 6.495 × 10−12N which will be able to propel
the ellipsoid and rod along at this same speed. We then use the axial resistance model
(4.1) to predict straight-line propulsive velocity U as head dimension, parameterized
by the equivalent radius R, is varied. The results of this simple model are shown
alongside the VSL predictions of the hydrodynamic simulation in figure 12(b). A
comparison of figure 12(a) and (b) shows that this simple axial resistance model gives
a reasonable prediction of trends in straight-line propulsive velocity.

There are, however, slight differences in the curves for figure 12(a) and (b) as we
would expect, given that the sperm yaws and translates laterally also. Figures 13 and
14 show the effects of varying head dimension on the sperm amplitude of lateral head
movement ALH and maximum yaw angle |θ |max during a flagellar beat cycle. These
figures are plotted with the same format as figure 12. Kim & Karilla (1991) note
that transverse resistance also scales with length, and it is this change in resistance
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Figure 15. Predicted inverse efficiency η−1
0 of sperm in an infinite medium as head dimensions

are varied. Simulations are presented for constant head length 5.8 μm (the solid line), for
constant head volume= 4
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π5.8 × 3.1 × 1 μm3 (the dashed line) and for constant head width

3.1 μm (the dashed-dotted line).

which explains the reduction in lateral movement with increasing head length. The
discussion in Kim & Karilla (1991) is also instructive when considering the effects
of head dimension on sperm yawing. They note that rotational resistance is sensitive
to length and scales as L3. An increase in head length produces a decrease in yaw
angle as is seen in figure 14. The head length in our simulation changes by a factor
of 3; however, the total sperm length changes by only around 12 %. The rotational
resistance of the head and flagellum will scale as (L + lh)

3, which for small (lh/L) is
approximately linear in lh/L.

Figure 15 shows the power consumption of the sperm as their head dimensions are
varied. The inverse efficiency is calculated, as in Higdon (1979) and Phan-Thien et al.
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(1987), as

η−1
0 =

P̄

6πμĀŪ 2
, (4.2)

where Ā is the volume average radius of the head (Phan-Thien et al. 1987). Although
the inverse efficiency curve is quite flat, there are minima in the curves close to
the ‘standard’ sperm head aspect ratio. The observation that the power curves are
‘U-shaped’ means that there is a sperm head aspect ratio for maximum efficiency. In
an infinite medium, we predict this maximum efficiency to occur at a head aspect
ratio of around 1.57 for the constant volume line, 1.7 for the constant width line
and 1.72 for the constant length line of figure 15. These maximum hydrodynamic
efficiencies occur at a head dimension range very close to 1.50–1.75 regarded as
normal morphology by WHO (1999).

5. Conclusions
Digital microscopy was used in this paper to obtain the flagellar beat velocity and

head centroid position of several human spermatozoa. The observed kinematics of
these cells were compared with the predictions of a hydrodynamic method based on
the method of regularized stokeslets. In order to implement the hydrodynamic method,
an ellipsoidal head and flagellum were discretized, and chamber walls were also
discretized in some simulations. These walled simulations were for a cell swimming
exactly half-way between parallel walls. Power consumption was estimated and was
found to be higher for simulations where walls were included. However, the kinematic
parameters were not largely affected by the presence of walls.

The kinematics and resulting tracks of the sperm, measured at high frame rate, are
complicated and individual cells can move between square-wave-like and triangular-
wave-like or other shaped tracks. These details are reproduced by the hydrodynamic
model despite the fact that only two dimensions (planar) tail motions were observed.
Fine detail in the tracks is also captured in some cases. Transverse velocity and
yaw angle were very well captured in all simulations, but average forward propulsive
velocity was underpredicted compared to experiment. Given that the model does
not underpredict forward propulsive velocity when applied to travelling wave test
cases (which do not require numerical differentiation of tail position to infer beat
velocity), it is postulated that the underprediction of forward progressive velocity of
the experimental cases indicates sensitivity to noise, or missing information, in the tail
data. For example, some of the propulsive velocity measured in experiment could have
been due to intrinsic three-dimensional tail motion of the sperm. Any out-of-plane
motions could not be measured in our experiment.

Power consumption calculated for the sperm was very much dependent on whether
slide chamber walls were included in the simulation – for the shallowest chambers
we tested, our power prediction was up to 50 % greater when walls were included.
We can conclude that calculations of power expenditure for sperm in MicrocellTM

chambers, or between slide and coverslip, should take chamber walls into account.
It is important to understand better the effect of finite chamber depth since current
international guidelines for human sperm observation suggest that only chambers of
depth 20 μm and above may be used during laboratory analysis for clinical purposes.
However, we note a moderate increase in power consumption of our simulated sperm
even at this chamber depth.
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Human sperm are pleomorphic, so even sperm with healthy, normal flagella display
a range of head size and shape. For clinical purposes, head dimensions, which are
important parameters in defining sperm function (WHO 1999), are obtained from
stained images of fixed (dead) sperm. A prototype model of one of the sperm was
used to investigate the effects of head shape on the propulsive velocities for complete
cycles of flagellar motion. The present fluid mechanical analysis suggests that head
dimension is a factor in determining the progressive velocity and amplitude of lateral
head movement and yawing of the sperm (all other aspects of the flagellar motion
being equal). Narrow heads have the highest forward progressive velocity. Heads with
short lengths have a large lateral movement compared to longer heads. Elongation of
the sperm head, while keeping the head volume constant, only has a small beneficial
effect on VSL. However, minima in the power consumptions for these simulations
were found where the sperm have ‘normal’ aspect ratio (an aspect ratio between 1.5
and 1.75). This suggests that the range of aspect ratios assessed as being ‘normal’
also correlates closely with the most efficient hydrodynamic range of aspect ratio.
This paper addresses the fluid mechanical effect of these head variations for a fixed
flagellar motion, and should therefore be of some use to andrologists by informing
them of the fluid mechanical effects of head dimension on sperm kinematics. In actual
sperm populations, however, some head abnormality and variations in head size may
be accompanied by abnormal flagella size or function. This paper does not address
changes to the flagellar beat that may be associated with abnormalities of the head.
We have only studied forward progressive motion here, and it may be that the head
has beneficial hydrodynamic effects for hyperactivated motility.
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Appendix: Details of the data-capture experiment
Human spermatozoa were obtained from patients and donors attending the

Andrology Laboratory located in the Jessop Wing of the Royal Hallamshire Hospital,
Sheffield, UK. Procedures were approved by the South Sheffield Research Ethics
Committee (protocol number 04/Q2305/30) and informed consent to make digital
video recordings of spermatozoa was obtained from each male donating a specimen
to this study. For each specimen provided, the sample was collected by masturbation
into a sterile, wide-mouthed container (Sarstedt Ltd, Leicester, UK) following a
period of 3–5 days sexual abstinence. Following production, each sample was kept
at a temperature of 37 ◦C for 30 min before routine procedures of semen analysis
were performed according to World Health Organization (WHO) guidelines (WHO
1999). If the specimen was found to be normozoospermic at semen analysis, a highly
motile suspension of spermatozoa was obtained from the remainder of the sample by
density centrifugation of a 1 ml aliquot of liquefied semen through a Percoll gradient as
described by Mortimer (1994). The final concentration of spermatozoa obtained was
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(a) (b)

(c) (d)

Figure 16. Sequence of still digital video camera images showing a swimming sperm and
measured track (the solid black line): (a) start of the track; (b) position and track after
0.48 s; (c) position and track after 0.96 s; (d ) position and track after 1.44 s. The other sperm
in the image is immotile.

adjusted to approximately 20 million sperm per ml in Earle’s Balanced Salt Solution
(EBSS) (Sigma Chemical Co., Poole, UK) containing 0.3 % (w/v) human serum
albumin (Sigma Chemical Co., Poole, UK). Sperm preparations were maintained in a
humid atmosphere at 37 ◦C in 5 % CO2 for up to six hours prior to being observed.
Samples were placed into MicrocellTM slides (Conception Technologies, San Diego,
USA) just prior to inspection by microscope, and cell chamber depths of 12 μm,
20 μm and 50 μm were used during the experimentation.

Spermatozoa were observed using a microscope and a digital image capture system.
This was based on a Nikon Eclipse E600 upright microscope fitted with phase contrast
rings, an (x, y, z) motorized, heated stage and a × 20 objective (numerical aperture
0.45). At this magnification, the field of view was approximately 0.05 mm × 0.05 mm,
and the depth of field was calculated to be 4 μm. Stage illumination was provided
by a lamphouse fitted with a 100-W halogen bulb. For digital video photography,
the microscope was equipped with a Dalsa model 2M30 monochrome, 10-bit digital
video camera, which has a pixel resolution of 1600 × 1200 pixel and a sensor size of
7.4 μm per pixel. The normal framing rate of the camera was 30 Hz, but experiments
were also performed with a framing rate of 121 Hz for which a smaller image area of
1600 × 200 pixel was recorded. Microscope stage position control and image capture
were provided by a PC running Windows 2000XP programmed in LabviewTM. The
camera interface to the computer was provided by a National Instruments PCI-1428
Camera LinkTM image acquisition card, and the microscope stage position control
signals were sent through an RS-232 interface. Camera exposure was set automatically
such that the images were not saturated, and a typical exposure time was 1 ms. Image
sequences were saved in uncompressed TIFF format. All image analysis, and indeed
all hydrodynamic analysis, was performed on Apple G4 and G5 platforms running
OS X.

A sequence of still images in figure 16 shows the typical raw image data.
The centroid of the head was tracked automatically, as was head principal
axis (orientation). Progressive motility was determined using standard parameters,
including straight-line velocity VSL, average path velocity VAP and amplitude of
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Figure 17. Contours of position coordinates for the flagellum of the sperm depicted in
figure 16: (a) x(s/L, t) coordinate; (b) y(s/L, t) coordinate. This data is used to estimate the
flagellar beat velocity.

lateral head movement ALH (Mortimer 1994). The average path is calculated, based
on a 30 Hz data sample, with a 5-point moving average of the X–Y track positions.
In all of our images, the flagellum could be discerned as a change in grey level, but
sometimes the distal end of the flagellum was indistinct. The flagellum may not be
clearly delineated in some images (mainly because of slight out-of-focal plane motion
or position), but it is clear enough to determine the flagellum length L at some time
points. As we assumed the flagellum to be inextensible (which is approximately correct
Lighthill 1976), we then fixed the tail length in all of the images as L. The proximal
end of the tail next to the head was distinct in each image, and a model flagellum
was fitted to each image by the following procedure: from the start point an arc was
drawn towards the distal end of the flagellum at radius ds (with ds approximately
L/100), and a new point was placed at the position of maximum grey level on this
arc. This new point corresponds to the flagellum position distance ds from the start
point. The process is repeated for the second point, and so on until the flagellum
model has a total length L. For some of the images, the unclear termination of the
flagellum presented a difficulty. In these cases, the clear points on the flagellum were
used to fit a fourth-order polynomial, which was then extrapolated to total length
L. Raw manipulation of the images yielded tail lengths that varied ±6 μm because
of optically unclear regions at the distal end of the tail, or from out-of-focal plane
movement, but this procedure rectified this length variation. Our image set (given the
small depth of field and the fact that most of the flagellum maintained focus in each
frame) indicated that these non-planar flagellum motions were quite small. For one
of our experiments, this automatic tracking and morphology procedure was verified
by additional manual tracing of the track and tail. A typical set of tail data, gathered
automatically, is shown in figure 17. An example of a section of the automatically
measured centroid track and propulsive velocities, associated with this flagellum data,
is shown in figure 18. This figure shows results typical of forward progressive sperm,
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Figure 18. Typical graphs of kinematic parameters measured for the forward progressive
sperm image sequence in figure 16 and flagellum data in figure 17: (a) head angle θ (deg),
(b) local (head-aligned) frame propulsive velocity Upx , (c) local (head aligned) lateral velocity

Upy (μm s−1) and (d ) head centroid track.

with a local Upx velocity biased in the forward direction (in this case −x) and a
more or less zero average Upy . In the raw images, the sperm head was seen to rotate
alternately (broadly about the x axis) and so presented an oscillating width profile to
the microscope. Small variations in observed head length were also seen in the raw
images, indicating that the head pitches out of the x–y plane slightly. These motions
must result from undetected out-of-plane tail motion. Although the hydrodynamic
simulation was three-dimensional, we could extract only two-dimensional (x–y plane)
information from the camera and microscope. The simulation is therefore incapable
of reproducing this observed head motion, and we were therefore intrigued as to how
the experimentally recorded tracks would compare to the hydrodynamic simulations.
As the head presented a time-varying profile to the camera, an averaging method was
used to approximate head length and width. All of the sperm we measured had length
and width close to the values published by Brennen & Winet (1977) of 5.8 × 3.1 μm
and so, because of the difficulty in obtaining exact head dimensions, we chose this
morphology as the standard head morphology for simulation.
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